Sodium-calcium exchange in regulation of cardiac contractility. Evidence for an electrogenic, voltage-dependent mechanism
نویسندگان
چکیده
The origin and regulatory mechanisms of tonic tension (Ca current-independent component of contractility) were investigated in frog atrial muscle under voltage-clamp conditions. Tonic tension was elicited by depolarizing pulses of 160 mV (Em = +90 mV, i.e., close to E ca) and 400--600 ms long. An application of Na-free (LiCl) or Ca-free Ringer's solutions resulted in a fast (less than 120 s), almost complete abolition of tonic tension. When [Na]o was reduced (with LiCl or sucrose as the substitutes), the peak tonic tension increased transiently and then decreased below the control level. The transient changes in tonic tension were prevented by using low-Na, low-Ca solutions where the ratios [Ca]0/[Na]40 to [Ca]o/[Na]4o were kept constant (1.1 X 10(-8) mM-3 to 8.7 X 10(-13) mM-5). Na-free (LiCl) solution elicited contractures accompanied by a membrane hyperpolarization or by an outward current even when the Na-K pump was inhibited. 15 mM MnCl2 (or 3 mM LaCl3) inhibited the development of the Na-free contracture and the related part of hyperpolarization or the outward current. In conclusion, our results indicate that tonic tension is regulated by a Na-Ca exchange mechanism. Furthermore, they suggest that this exchange could be electrogenic (exchanging three or more Na ions for one Ca ion) and thus voltage dependent. The possible contribution of an electrogenic Na-Ca exchange in the maintenance of cardiac membrane potential is discussed.
منابع مشابه
Effect of cardiac glycosides on action potential characteristics and contractility in cat ventricular myocytes: role of calcium overload.
There is increasing evidence that cardiac glycosides act through mechanisms distinct from inhibition of the sodium pump but which may contribute to their cardiac actions. To more fully define differences between agents indicative of multiple sites of action, we studied changes in contractility and action potential (AP) configuration in cat ventricular myocytes produced by six cardiac glycosides...
متن کاملWhat regulates Na+/Ca2+ exchange? Focus on "Sodium-dependent inactivation of sodium/calcium exchange in transfected Chinese hamster ovary cells".
Considering that the cardiac Na /Ca exchanger (NCX1.1) is the predominant mechanism for transsarcolemmal Ca efflux in cardiac myocytes, it is obvious that this transport system must be regulated actively. Sodium/calcium exchange removes roughly the same quantity of Ca that enters through L-type Ca channels on a beat-to-beat basis. Imbalances in Ca influx and Ca efflux cannot occur in cardiac ce...
متن کاملTemperature-dependent model of human cardiac sodium channel
Cardiac sodium channels are integral membrane proteins whose structure is not known at atomic level yet and their molecular kinetics is still being studied through mathematical modeling. This study has focused on adapting an existing model of cardiac Na channel to analyze molecular kinetics of channels at 9-37°C. Irvine et al developed a Markov model for Na channel using Neuronal Network Model ...
متن کاملTemperature-dependent model of human cardiac sodium channel
Cardiac sodium channels are integral membrane proteins whose structure is not known at atomic level yet and their molecular kinetics is still being studied through mathematical modeling. This study has focused on adapting an existing model of cardiac Na channel to analyze molecular kinetics of channels at 9-37°C. Irvine et al developed a Markov model for Na channel using Neuronal Network Model ...
متن کامل"Creep currents" in single frog atrial cells may be generated by electrogenic Na/Ca exchange
The objective of these experiments was to test the hypothesis that the "creep currents" induced by Na loading of single frog atrial cells (Hume, J. R., and A. Uehara. 1986. Journal of General Physiology. 87:833) may be generated by an electrogenic Na/Ca exchanger. Creep currents induced by Na loading were examined over a wide range of membrane potentials. During depolarizing voltage-clamp pulse...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 73 شماره
صفحات -
تاریخ انتشار 1979